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The transition between hexagons and rolls in convective patterns has been studied. 
The transition thresholds and changes in the Nusselt number are discussed 
theoretically in terms of calculations made by Busse (1967 a )  and with amplitude 
equations. Experiments have been done in a shallow layer of pure water under non- 
Boussinesq conditions using complementary techniques : shadowgraph (qualitative), 
optical (based on the deflections of a laser beam) and calorimetric. The experimental 
values of the critical Rayleigh number R, and the critical wavenumber k, are in 
agreement with theoretical ones. However, theory and experiments show some 
discrepancies in the slopes of the non-dimensional convective heat flow curve and in 
the thresholds of the hysteretic hexagons-rolls transition. These discrepancies are 
discussed in terms of lateral effects and of the presence of defects in the pattern. 

1. Introduction 
Rayleigh-B6nard convection provides a good example of dynamical pattern- 

forming systems. When the driving control parameter exceeds a critical value, a 
homogeneous translationally invariant state loses stability. In the case of 
Rayleigh-BBnard (RB) convection this corresponds to the rest state, which is 
replaced by motions that organize themselves to form a pattern of rolls. However, 
by considering temperature-dependent transport coefficients (non-Boussinesq con- 
ditions) (Palm 1960; Busse 1 9 6 7 ~ ;  Hoard, Robertson & Acrivos 1970; Dubois, Berg6 
& Wesfreid 1978 ; Ciliberto, Pampaloni & P6rez-Garcia 1988), patterns of hexagons 
can appear. 

A t  a secondary threshold a transition between different symmetries is also 
possible. This is not the same case as in an order-disorder transition but is more 
similar to a first-order phase transition with a gap in the order parameter. In these 
non-equilibrium transitions the state with higher symmetry (hexagons) is replaced 
by one with lower symmetry (rolls). Some weakly nonlinear theoretical analyses 
predict that hexagons can become unstable against rolls after some secondary 
threshold in simple liquids under non-Boussinesq conditions (Palm 1960 ; Busse 
1967~) .  Experiments (Dubois et al. 1978; Walden & Ahlers 1981 ; Ciliberto et al. 1988) 
support this result. 

Heat flow measurements can characterize globally these transitions because this 
quantity is sensitive to the symmetry variations. In fact, the slope of the curve of the 

t Also at Department de Fisica, Universitat Autbnoma de Barcelona, 08193 Bellaterra 
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non-dimensional convective heat flow N (proportional to the ratio between the 
convective heat flow and the conductive one) changes for different symmetries as 
calculated by Schliiter, Lortz & Busse (1965) and shown experimentally by Walden 
& Ahlers (1981). Therefore, the calorimetric technique is a suitable method to survey 
global changes in the pattern. Other kinds of techniques can be used to characterize 
these transitions. Dubois et al. (1978) used laser-Doppler anemometry in the 
transition from hexagons to rolls in water near 4 "C (non-Boussinesq conditions). 
Another very useful technique has been recently used by Ciliberto et al. (1988) to 
study this transition. 

Usually an important difference between theory and experiments in pattern- 
forming systems arises as a consequence of the finite extent of real systems. 
Theoretical studies deal with the case of an infinite aspect ratio r (the ratio between 
a characteristic horizontal length and the layer thickness), while in experiments 
lateral boundaries introduce important effects. The first effect is the modification of 
the temperature difference at the convective threshold (Charlson & Sani 1970; Brown 
& Stewartson 1977). The second important effect of lateral walls is a wavenumber 
selection mechanism that has been studied by Cross et al. (1980). When the selected 
wavenumber does not coincide with the critical one, i.e. that obtained by the linear 
theory for an infinite system, the non-dimensional convective heat flow Jtr is 
modified. Therefore, to understand the transition between different planforms it is 
very important to know the variation in the wavenumber (see the extensive study 
of Walden et al.). 

The third effect is due to defects that, although local, lead to global changes in the 
pattern introducing disorder even near threshold (see Heutmaker & Gollub 1987 ; 
Steinberg, Ahlers & Cannell 1985). The dynamics of defects in convective patterns of 
rolls have been extensively studied (Manneville 1990). In  hexagonal patterns the 
main defect is the pentagon-heptagon pair (Pantaloni & Cerisier 1983), which 
introduces dislocations in two of the three directions that form the hexagonal lattice. 
Therefore, in a transition between different symmetries defects play an important 
role similar to that of condensation nuclei in first-order phase transitions in 
equilibrium. Of course, the presence of these defects modifies the transition 
thresholds. 

The purpose of the present paper is to analyse in some detail the characteristic of 
the transition between hexagons and rolls in convection in fluids under non- 
Boussinesq conditions. Section 2 is devoted to discussing some of the theoretical tools 
to relate the amplitude equations with the heat flow measurements. In 93 we describe 
in some detail the experimental set-up and techniques. In  94 the transition between 
hexagons and rolls is analysed, and a comparison between theory and experiment is 
made. Finally conclusions are presented in $5.  

2. Some theoretical tools to study convection under non-Boussinesq 
conditions 

2.1. Calculation of the critical Rayleigh number in finite geometries 
The most relevant parameters in RB convection are the Rayleigh number 
R = ugL\Td3/v~, the relation between buoyancy effects and dissipative effects, and 
the Prandtl number Pr = v/K, the ratio between vorticity and heat diffusion 
coefficients. In  the present definitions the parameters u, 9 ,  v and K correspond to the 
thermal expansion coefficient, the acceleration due to gravity, the kinematic 
viscosity and the heat diffusivity. 
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In the Oberbeck-Boussinesq (OB) approximation theoretical calculations show 
that convection starts for R 3 R,  = 1708 (the subscript c denotes critical values at  
threshold) for r= m (Chandrasekhar 1961). However, some corrections must be 
added to take into account the finite size, the geometry and the departures from the 
OB approximation. Some authors have discussed theoretically the influence of the 
geometry on the onset of convection (Davis 1967; Davis-Jones 1970; Catton 1970; 
Wesfreid et al. 1978; Luijkx & Platten 1981; Ahlers et al. 1981). But for the 
cylindrical geometry and axisymmetric flow between insulating lateral walls 
Charlson & Sani (1970) have shown that the effects of a finite obey a relation of the 
form 

where 6; is the correlation length in the amplitude equation (Wesfreid et al. 1978). 
For rigid-rigid boundary conditions 6; = 0.148. Experimental studies show a very 
good agreement with (2.1) in the range of small and intermediate r (for a more 
detailed discussion on this point see $ 7  in Behringer & Ahlers 1982). In our case 
E ,  = 9.3 x which leads to R,(T = 20) = 1710. However, corrections due to the 
finite thermal conductivity of the upper plate (the ratio CT of the heat conductivities 
of sapphire and water is u = 54) must also be taken into account to calculate the 
convective threshold (Rihai 1985 ; Jenkins & Proctor 1984). These corrections give 
ARC (CT = 54) z -2. Therefore the corrections due to the finite size and the finite 
conductivity of the upper plate cancel and we recover the value R, = 1708. 

2.2. Departures from the Oberbeck-Boussinesq approximation 
Convective motions are usually described under an approximation due to Oberbeck 
and Boussinesq. In this approximation the temperature dependence of the fluid 
parameters is neglected, except for the thermal expansion effect responsible for 
buoyancy. In the energy balance equation the viscous dissipation term is also 
neglected in comparison with the conductive term. There are some theoretical 
investigations on the effects of departures from the Oberbeck-Boussinesq approxi- 
mation (Palm 1960; Segel & Stuart 1962; Segel 1965; Palm, Elligsen & Gjevik 
1967; Busse 1967a; Davis & Segel 1968). Of these, the work of Busse (1967~)  is the 
most complete because he considers the effect of small variations of all the 
temperature-dependent fluid parameters and the effect of the Prandtl number in a 
coherent manner. However, Busse’s analysis (see the Appendix) has three important 
limitations : (i) i t  is calculated for a infinitely extended fluid layer and, therefore, does 
not include the sidewall effects ; (ii) it is a purely global analysis and cannot account 
for the local dynamics in a pattern with defects or for the coexistence of two 
symmetries, usually seen in patterns with this kind of competition; (iii) the non- 
Boussinesq parameter is not given as a function of the Prandtl number in the 
rigid-rigid case (this last limitation introduces an indeterminacy in the transition 
threshold calculation). Experiments partially confirm some of the predictions of 
Busse’s theoretical work (Sommerscales & Dougherty 1970; Hoard et al. 1970; 
Richter 1978; Dubois et al. 1978 ; Ahlers 1980; Behringer & Ahlers 1982; Koschmieder 
& Campbell 1987). 

2.3. Amplitude equations 
A more general method to study the characteristics of the hexagon-roll transition is 
based on the so-called amplitude equations. In the past few years numerous work has 
shown the validity and richness of this method that allows the main features of 
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pattern forming systems to  be understood (Manneville 1990). This method allows 
local spatial variations to be accounted for (Newell & Whitehead 1969; Segel 1969) 
and therefore, the dynamics of defects to  be studied. As we will see, the global 
features of the pattern can be also recovered from these equations by some 
integration. 

The solutions of the hydrodynamic equations can be written in the form (Ahlers 
et al. 1981) 

w, 4 wo(4 K / d  3 (2 .2)  1 ( “ “ ‘ “ t ’ )  %[( R, ]i ( V W ,  t )  4 J Z )  K / d  

W , z , t )  = w(r ,z , t )  
w, 2, t )  wo eo)z  . Y ( r ,  t )  O,(z)  AT,/R, 

where r is the vector in the horizontal plane and u(r,  z ,  t ) ,  w(r,  x ,  t )  and T(r ,  2 ,  t )  denote 
the horizontal and the vertical components of the velocity field and the temperature 
field, respectively. The subcript 0 indicates the linear solution of the corresponding 
quantity. The order parameter Y(r,  t )  is the projection of the hydrodynamical 
variables onto the slowest unstable mode. (The linear solutions u,(z), wo(z) and Oo(z ) ,  
as well as the critical wavenumber k, = 3.1, are given in Cross 1980). The development 
in normal modes of this order parameter can be written as 

Y(r , t )  = C $k exp(ik.r), 
k 

where $k is the Fourier coefficient of Y corresponding to the wavenumber k .  

normalization relation : 
The multiplicative factor in (2 .2 )  has been chosen in order to  have the following 

where N = qtot/qCond is the Nusselt number, the ratio between the total heat flow 
qtot = qcond + qconv and the conductive heat flow qcond, and S the horizontal area of the 
layer. Therefore, the non-dimensional convective heat flow Jlr is the sum of the 
intensities of all the modes present in the system. 

Experimentally one can see that the convective patterns are very ordered, with a 
predominant geometry (rolls, hexagons, etc.). This means that the modes in the 
development (2 .3 )  are concentrated into sharp peaks (two for rolls and six for 
hexagons) in Fourier space. Therefore, it is useful to consider the following 
development for the order parameter : 

3 

$(r,  t )  = 4 2  Re Ai(r ,  t )  exp (ik,-r) 

where we take as reference the hexagonal form, which is formed by the super osition 
of three sets of straight rolls characterized by wavenumbers that obey s k i  = 0, 
(k,-k,( = ik: (i +j) and i = 1 , 2 , 3 ,  and by amplitudes A ,  defined as 

A ( r , t )  = 4 2 [  $,,exp(i(k-k,).r) . (2 .6 )  
k i k i  1 

The sum is over the modes inside a peak centred over the wavenumber ki in the 
Fourier space. 
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The evolution of these amplitudes must be in the form 

(i = i mod3). (2.7) 

Here E = (AT - AE)/A% denotes the temperature difference above threshold. The 
relaxation time T ~ ,  the correlation length go (which also appears in (2 .1) ) ,  the critical 
Rayleigh number Rc and wavenumber kc are obtained from a linear stability analysis 
of the full hydrodynamic equations of the system. The superscript * denotes the 
complex conjugate and a/&, and a/ayi are the spatial derivatives parallel and 
perpendicular to the vector k,, respectively. The physical meaning of the nonlinear 
coefficients a ,  b and c ,  will be specified later on. 

These equations can be written in a variational form (PBrez-Garcia, Pampaloni & 
Ciliberto 1990a) and, as a consequence, the evolution of the system to stationary 
states is monotonic. (For a discussion of the limitations of such a variational 
formulation see Heutmaker & Gollub 1987.) 

The stable, stationary and homogeneous solutions of (2 .7)  are (i) a pattern of rolls 
IA,I = lAll + 0,lA.J = lA31 = 0, and (ii) a pattern of hexagons lAll = lAzl = IA31 = IAhl. 
A linear stability analysis of these solutions allows i t  to be determined that rolls are 
stable for E 2 where er is given by 

On the other hand, hexagons are stable in the interval E ,  < 8 < Eh with 

and the ratio between the two thresholds E ,  and 8, is 

(2.10) 

The corresponding bifurcation diagram is plotted in figure 1 .  
It is interesting to relate the amplitude equations with the heat flow measurements. 

The comparison can be made by taking into account the following relation obtained 
by substitution of (2 .5)  in (2 .4) :  

(2.11) 

where the bracket ( )z,y indicates the average on the horizontal plane. 

N is 
For an homogeneous hexagonal pattern the non-dimensional convective heat flow 

(2.12) .V;, = 31AhI2 = 3 / C { a 2 / 2 ~ + s + a / 2 ~  ( a 2 + 4 ~ 4 ,  

where C = c+2b. For rolls the expression is simply 

Jvr = IA,12 = E / C .  (2.13) 

As a consequence the slope of N r ( s )  gives direct information about the coefficient c ,  
while the determination of b and a from N, requires a more delicate fitting. 
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R 
FIGURE 1 .  The amplitude of convective motions as a function of R .  (Full lines = stable 

solutions, dashed lines = unstable solutions.) 

3. Experimental set-up and procedure 
3.1. Characteristics of the convective fluid 

The working fluid is pure water. We gather together in table 1 the values of the 
different parameters of the fluid at the maximum (bottom), mean, and minimum 
(top) temperatures on the cell a t  threshold. This allows calculation of the non- 
dimensional numbers (Rayleigh number R,  Prandtl number Pr and a non-Boussinesq 
parameter 9’) that characterize convection and the departures from the Boussinesq 
approximation. 

3.2. The convective cell 
The experiment was performed in a cylindrical cell whose inner lateral wall is not 
vertical, but has a triangular shape in order to reduce the induction of concentric 
rolls due to the cylindrical symmetry. The radius a t  the top of the wall is r = 36 mm, 
that a t  the bottom is rb = 38 mm and the cell depth is d = 1.8 mm. Consequently the 
aspect ratio is T = r / d  = 20. The horizontal diffusion time is 7,, = r 2 / K  = 2.45 h. 

A schematic representation of the cell and the thermal stabilization apparatus is 
shown in figure 2. The cell is constructed from a copper bottom plate (CP), a sapphire 
upper plate (SP) and a lateral wall made from Plexiglas (LW). The copper plate has 
its upper surface polished to a mirror finish and covered with nickel and gold films. 
This plate has two small holes (0.8 mm 0) drilled on its diameter at a distance of 
75 mm from each other, so these holes are just below the triangular shaped walls. An 
electrical resistor (ER), fed by a power supply unit (PS2), heats the bottom of the 
copper plate. The sapphire plate is cooled by a temperature-stabilized water flow 
(WF1) circulating between this plate and an upper glass plate (GP). 

The cell is inside a box whose temperature is regulated by a water flow (WF2) 
coming from a thermal bath (TB) (Haake F3-K). By means of a heat exchanger (HE) 
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n 

FIQIJRE 2. Schematic view of the convective cell and thermal regulation system : CF, convective 
fluid; CP, copper plate; ER, electrical resistor; GP, glass plate; H, heater; HE, heat exchanger; 
L, lens; LI, lock-in; LW, lateral wall; P, pump; PS1(2), power supply l(2); SP, sapphire plate; TB, 
thermal bath; Th1(2,3), thermistor-1(2,3); WB, Wheastone bridge; WF1(2), water flow l(2). 

Water 22 "C 28.3 "C 34.6 O C  

p (g Cm-3) 0.99777 0.99662 0.994 17 
u (K-l) 227.5 x 288.0 x 342.4 x 

C, (J g-' K-l) 4.1808 4.1787 4.1782 

v (cm2 s-l) 9.569 x 8.301 x 7.295 x 
n 1.33281 1.33215 1.33 127 

h (W cm-' K-l) 6.01 x 10-3 6.11 x 10-3 6.20 x 10-3 

K (cm2 s-l) 1.44 x 1.47 x 10-3 1.49 x 10-3 

TABLE 1 .  Water properties (p  = density, a = thermal expansion coefficient, h = heat conductivity, 
C, = specific heat, K = heat diffusivity, v = kinematic viscosity and n = index of refraction) from 
Weast (1985) 

this bath also cools the refrigerating water flow (WF1) circulated by a pump (P) (flow 
rate 20 dm3/min) in the thermal stabilization circuit of the sapphire plate (SP). The 
thermal stability of WF1 is controlled by a feedback loop. The sensitive element of 
this loop is a thermistor (Thl) that measures the temperature of the top surface of 
the sapphire plate (SP). This thermistor is inserted in an ax .  bridge circuit (WB). The 
unbalance signal of the bridge circuit goes to a vectorial lock-in amplifier (LI) (EG&G 
PARC model 5102) that drives an external voltage-controlled power supply unit 
(PS1). This power unit (Psi) feeds the heater (H) that heats the water flow (WFl), 
thus closing the feedback loop. The measured long-term stability (one week) of the 
temperature of the upper plate is kO.005 K. The temperature difference across the 
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camera 

FIQURE 3. Optical set-up for the shadowgraph and the laser beam deflection techniques: BS1(2), 
beam splitter i(2) ; GM1(2), galvanometric mirror i (2) ;  L, lens; L1(2,3), lens 1(2,3); M1(2), mirror 
i(2) ; PSD, photo-sensitive detector; RM, removable mirror. 

cell is measured with a thermistor (Th2) placed on the upper surface of the sapphire 
plate and another thermistor (Th3) placed in the middle of the copper plate. 

3.3. Experimental techniques 
The convective motions are analysed by three experimental techniques : shadow- 
graph, laser beam deflection and calorimetric. 

3.3.1. Shadowgraph technique 
The sapphire at  the top of the convective cell allows optical inspection. Therefore, 

we can visualize the flow by vertical shadowgraph. In our case this technique only 
serves to give the qualitative features of the convective patterns because, as we will 
show in the following, the laser beam deflection is a more powerful technique for 
quantitative measurements. The shadowgraph method is shown in figure 3. During 
each of these shadowgraph measurements the removable mirror (RM) has to rest 
down. The light coming from an optical fibre is used as a point source, that is in the 
focus of the lens L3. The light passes through two lenses (L3) and (L) placed in a 
confocal configuration. Thus, a parallel light beam crosses the convective fluid 
vertically and is reflected by the polished bottom plate. The light coming back from 
the cell is reflected by the beam splitter (BS2) into a 50 mm objective, used to form 
the image of the convective pattern on a CCD video camera (SONY AVC-D5CE). 
This image is displayed in real time on a video monitor and recorded by a video- 
recorder (SONY VO-5630). 

The method relies upon the variation of the index of refraction with temperature. 
Light rays passing through cold, dense, descending fluid are slightly focused while 
those crossing warm, ascending fluid are defocused. Thus, the convective motions act 
like thermal lenses (convergent in descending cold motion and divergent in ascending 



Transition in convection in jluids under non-Boussinesq conditions 401 

warm motion). Therefore, one can see an image formed by dark and light regions 
which delineates the cells of the convective pattern. In our case the contrast between 
these regions is sufficient to be seen directly by sight. Although the images obtained 
were quite good we used an image processing system to enhance the contrast. 

3.3.2. Laser dejection technique 
This local technique (Giglio & Vendramini 1975, 1977) is based on the deflection 

of a laser beam that crosses the convective fluid layer along the vertical. (The method 
described here, is an improvement of a technique developed by Ciliberto, Francini & 
Simonelli 1985). This deflection is due to the gradients of the refractive index induced 
by the temperature field associated with the convective motions. For small 
deviations (typically rad in our case) the deflection angles along x(8,) and y(8,) 
are related to the horizontal thermal gradient inside the fluid by the following 
expressions : 

(3.1) 

where ( ), indicates the average in the vertical direction. 
The laser beam (Melles-Griot 05 LHR 121 He-Ne laser) sweeps the maximal square 

area inscribed in the circumference of the cell in the (x,y)-plane and so we can 
measure the horizontal temperature gradient averaged along z as a function of x and 
y. In our experimental set-up, shown in figure 3, the sweep is similar to a TV raster 
scan. The scanning mechanism is constructed with the two mirrors (GM1) and (GM2) 
mounted on two galvanometers (General Scanning G120 DCM), for the x and y scans, 
respectively. The lenses (Ll)  and (L2) focus the laser beam into the cell to have the 
minimum spot size (laser beam width about 0.3 mm) in the testing region. 

During each of these measurements the removable mirror (RM) has to rest up. The 
two mirrors (GMl), (GM2) are placed very close to each other and they are 
(neglecting the distance between them) in the focus of the lens (L). With this 
arrangement the laser beam deflected by the two mirrors reaches the convective fluid 
remaining parallel to the optimal axis, in every position of the two-dimensional 
sweep, within a small error (less than 0.5 mrad). This small error is mainly due to the 
distance between (GMl) and (GM2), which prevents a perfect focusing of both 
mirrors. This error and those due to unavoidable alignment errors, optical 
aberrations, etc., can be corrected by subtracting a reference image (at A T  = 0) in the 
reconstruction of the temperature gradient field. 

The sweeping laser beam, after crossing the fluid, is deflected by a mirror (Ml)  and 
a beam splitter (BS1) to a position-sensitive detector (PSD) (UDT 100) that is placed 
in the focal plane of the lens (L). As explained above, the thermal gradients in the 
fluid lead to a displacement (Ax,Ay) of the light distribution barycentre on the 
detector surface. In this configuration, this displacement is related to the deflection 
angles through the expressions Ax =fox, Ay =feu, where f (=  1 m) denotes the focal 
length of the lens (L). This displacement is converted by the PSD into a voltage 
signal for both directions. These signals go to specific electronics that amplifies and 
normalizes them with respect to the total intensity reaching the PSD, thus 
compensating for the fluctuations of the laser intensity. The electronic output 
voltages (V,, V,) are related with (Ax, Ay) simply by the relations V, = AAx, V, = AAy, 
where A = 3.94 V mm-'. By using the water parameters in table 1, the expressions 
for Ax and Ay and (3.1), we can write the following expressions: 

0, = 2d dnldT <aT/ax),, 8, = 2d dnldT (aTlay),, 

v, = B (miax),, v, = B (aT/ay), (3.2) 
with B = 2.06 V cm K-l. 
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The last part of the system includes the data acquisition based on two 12-bit- 
resolution AD converters (Burr-Brown, ADC803) interfaced with a personal 
computer (PC) Olivetti M-24, that samples and stores both V, and V, signals. The 
data acquisition is synchronized with the sweep by sending to the PC two pulses that 
mark, respectively, the beginning of the raster scan and the start of every horizontal 
sweep. Frames of 128 horizontal lines of 128 points each are obtained on a square 
area of 4.9 x 4.9 cm2. The problem of errors of this technique has been discussed 
elsewhere (Ciliberto et al. 1985). We just note that the overall accuracy of the single- 
point measurements is about 5 %  and the sensitivity is about 0.02 K cm-'. 

In  every run the horizontal scanner was driven a t  a frequency of 40 Hz allowing 
us to take a whole image in about 3 s. This time is much smaller than the horizontal 
diffusion time T, = 2.45 h that characterizes the motions of the convective pattern in 
the (2, y)-plane. Therefore, many frames (more than 100) can be taken in a interval 
of time 7,120. By averaging these images the noise is reduced. It is also important to 
notice that under our experimental conditions (thin layer, high thermal gradient) the 
heating due to the laser radiation is negligible because the laser power is less than 
0.5 mW and the absorption coeficient of water is small a t  the He-Ne laser frequency. 

The laser deflection technique allows us to obtain the horizontal temperature 
gradient field ((aT/ax),, (aT/ay),) averaged on the vertical coordinate. This field 
can be integrated numerically to recover the horizontal temperature field ( T ) , ( z ,  y). 
To do this integration we used the properties of a Fourier transform by means 
of which it was also possible to compute the spatial Fourier spectrum of 
(T) , ( z ,  y), S(k,,  ku). We used the Cooley-Tuckey FFT algorithm, Ramirez 1985). 
Therefore, ( T ) ,  may be rewritten in terms of the $k,  defined in (2.2)-(2.3), as 

where the t,hk are now obtained from the measured temperature field. 

3.3.3. Calorimetric technique 
The heat transfer across the convective cell is measured by means of a standard 

calorimetric technique. The convective threshold, characterized by a 'break' in the 
slope of the heat transfer curve as a function of the temperature difference, can also 
be determined. As we will see in the next section, this technique is complementary 
to the laser deflection technique, because in the latter the measures of the heat flow 
are more sensitive to the structure of the convective pattern and less to the influence 
of the lateral wall of the cell than the calorimetric technique. 

The total heat flow qtot, through the fluid layer comes from two contributions: 
conduction and convection, qtot = qconv + qcond. The conductive part can be simply 
obtained from the Fourier law qcond = A,AT,/d, where AT, is the temperature 
difference across the fluid layer and A, the thermal conductivity of water. The total 
temperature difference across the cell is measured with two thermistors (Th2) and 
(Th3) (see figure 2),  one placed on the upper surface of the sapphire plate and the 
other in the midplane of the copper plate. AT, is related to the temperature difference 
on the sapphire AT, and on the copper plate A!t$ by the relation AT,,, = 
A E  + AT, + AC. Taking into account the continuity of the heat flow through the fluid 
layer, the sapphire and the copper plate, we have 

qtot = Ac AT, ldc  = As AT,Ids = Aw ATwld + qconvt (3.4) 



Transition in convection in jluids under non-Boussinesq conditions 403 

where the subscripts c and s indicate the copper and the sapphire parameters, 
respectively. Therefore, AT, becomes 

W o t  - ( d s / A s  + dc/& 1 qconv AT, = 
1 + A, d,/& d + A, d,/A, d (3.5) 

The power P dissipated by the electrical resistor (ER) (see figure 2) heating the 
copper plate is determined from the value of the voltage applied, V ,  to the ER and 
by the value of the current intensity I flowing in ER, P = IV. However, only the 
fraction c, of P contributes to the total heat flow qtot through the fluid layer, mainly 
due to the heat losses on the lateral walls. Calling the area of the cell S, we can write 

P 
Ptot = c1 3, 

and from (3.4)-(3.6) the convective heat flow qconv can be written in the form 

The value of c,(c, = c l d / S )  can be directly determined from (3.7) by a best fit of 
measurements taken in the purely conductive state (q,,,, = 0) .  The obtained value 
is c2 = (222.4f0.4) x mm-l. From (3.5)-(3.7) we can also obtain the Nusselt 
number N 

All the terms in this final expression are directly measurable except the thermal 
conductivities, which are obtained from Weast (1985). Uncertainties in the 
determination of the Nusselt number N by this method were normally dominated by 
(a )  the thermal fluctuations of the thermal stabilization system, ( b )  the nonlinearities 
in the Fourier law and ( c )  the errors in the determination of d,  d,, d,, c2, A,, A,, A,, 
P and AT. Adding these contributions, the resulting error in the Nusselt number N 
is about 2%. 

3.4. Experimental procedure 
To obtain experimental results with the techniques described in $3.3 we proceed as 
follows. The voltage applied to the heating resistance in the bottom plate is increased 
automatically by steps of 0.2V. (This leads to a small change in the temperature 
difference, that for each voltage can be determined in stationary conditions.) After 
5 h (w 2 ~ ~ ) ,  a time sufficient to obtain a well established pattern, the image and data 
acquisition start. The procedure is repeated for 30 increasing voltage values and then 
for 30 decreasing values. Now we present the main results obtained from these 
measurements. 

4. Experimental results 

4.1.1. Shadowgraph technique 
Using the shadowgraph technique described in 83.3.1, pictures corresponding to a 

top view of the pattern were obtained. Below threshold a pattern of concentric 
convective rolls is visible but with a weak intensity. We have observed that in a 
convective cell with a triangular lateral wall these concentric rolls are less stable than 

4.1. Experimental observations of the hexagonroll transition 
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FIQIJRE 4. Shadowgraph images of convective pattern: ( a )  E = 0.015; ( b )  E = 0.035; (c) E = 0.140; 
(d )  g = 0.110; ( e )  E = 0.050; (f) E = 0.035. 

in cells with a vertical wall. This suggests that these subcritical rolls are due to a 
mismatch between the heat conductivities of the lateral wall and of the fluid, which 
causes the appearance of an horizontal temperature gradient when AT is changed 
(Meyer, Ahlers BE Cannell 1987). 

Pictures in figure 4 show the pattern evolution when E increases above threshold. 
In figure 4 ( a )  (8  = 0.015) a very regular hexagonal pattern appears. Notice that a 
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FIGURE 5. (a+) Temperature-field isotherms obtained with the laser beam deflection technique for 
increasing E (ST is the temperature difference between two isotherms): (a)  E = 0.022 (6T = 0.21 K); 
(b)  E = 0.041 (ST = 0.32 K) ;  (c) E = 0.140 (ST = 0.42 K). (d- f )  Fourier spectra of the temperature 
field in the full scanning area for the same values of E as in (a-c) respectively. 

region exists in which the intensity is weaker than in the rest of the cell. This can be 
due to two effects: (i) a very small difference in the layer depth due to non-perfect 
parallelism of the sapphire and copper plates of the cell (a difference of 10 pm suffices 
to create this inhomogeneity) ; (ii) a temperature difference between the inlet and 
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outlet of the refrigeration water of the upper plate due to the high heating power of 
the bottom plate. It is not easy to avoid these problems (i) because it is difficult to 
ensure a precision of less than 10 pm height in a cell of these characteristics and (ii) 
because we need a relatively high heating power to have convection in a very shallow 
cell. However, we suspect that in the present experiment the second effect is 
dominant. In  fact, when the sense of circulation of the water in the refrigeration 
circuit is reversed the less intense part moves so as to remain in the region near the 
outlet of the cooling water. 

Figure 4(a)  also shows that the orientation of the hexagonal pattern cannot be 
fully compatible with the cylindrical cell geometry. On the boundary, in fact, 
convective motions organize themselves to form rolls perpendicular to  the lateral 
wall. However, all the roll orientations in a cylindrical cell are not compatible with 
those of the three systems of rolls that form the initial hexagonal pattern. So, some 
lateral rolls not oriented in the same direction as the three main sets of rolls that form 
the hexagonal pattern appear in six regions. (By analogy with solid state physics 
these can be considered as frustration regions.) In  the subsequent evolution (see figure 
4b, E = 0.035) these rolls invade the cell. The three orientations compete till, 
after some transitions, one of the orientations prevails. Hereafter a regular pattern 
of rolls is established as can be seen in figure 4(c) ( E  = 0.140). I n  figure 4(c) one can 
see that some grain boundaries exist where the hexagonal symmetry still survives. 
The stability of the structures shown in these figures has been checked a t  least for 
50 h (that in figure 4c for more than 140 h). 

Infigures4(d) ( E  = 0.110),4(e) ( E  = 0.050),and4(f) ( E  = 0.035)theevolutionofthe 
pattern with decreasing e is shown. From this sequence one sees that hexagons 
invade the pattern of rolls from the grain boundaries till the initial, almost perfect, 
pattern of hexagons (like that in figure 4a)  is recovered. Finally, from these pictures 
it is possible to determine the wavenumbers k for the different patterns. No difference 
between hexagon and roll patterns has been found: the common value is 
k, = 3.1 k0.05. 

4.1.2. Reconstruction of the temperature field with the laser dejection technique 
The deflection technique gives, with great accuracy, local quantitative information 

that can be integrated to determine the global characteristics of the pattern. Figure 
5 show the isotherms of the temperature field (T),(z,  y) at different values of E ,  

reconstructed as explained in $3.3.2. We report on a central square (24.5 x 24.5 mm) 
of the whole scanning area (49 x 49 mm) in order to show the details of the 
temperature field. The corresponding Fourier spectra S(k,,  k,) computed over the 
whole scanning area are also gathered in figure 5. In  figure 5 (d) the regularity of the 
hexagonal pattern is well reflected in the six sharp peaks in the spectrum. The 
sequence with increasing E shows the destabilization of this hexagonal pattern. One 
of the three set of rolls that  forms the hexagonal pattern prevails, as it can be seen 
in figure 5(b) and in the corresponding spectra, figure 5(e). Then a single set of rolls 
is well established (figure 5c,f). With decreasing E ,  an inverse process takes place 
(figure 6). At some points two sets of rolls, oblique to the main one, reappear leading 
finally, for small values of E ,  to a regular pattern of hexagons like the initial one. (As 
we will see below this process is hysteretic and the transition threshold can be 
determined with this technique). 

From the temperature field one can calculate the wavenumber of the pattern 
which in all the cases analysed is k, = 3.1 k0.05, in good agreement with that 
obtained with the shadowgraph technique. 
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FIGURE 6. (a+:) Temperature-field isotherms obtained with laser beam deflection technique for 
decreasing E :  (a) E = 0.086 (ST = 0.42 K);  ( b )  E = 0.033 (ST = 0.21 K ) ;  (c) E = 0.027 (ST = 0.21 K). 
(d-f) Fourier spectra of the temperature field in the full scanning area for the same values of B as 
in (a-c) respectively. 
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FIGURE 7. Non-dimensional heat flow A" = ( N -  l ) R / R ,  as a function of E.  (a) Calorimetric 
technique (linear fit). Laser beam deflection technique: (b) linear fit, (c) nonlinear fit. (d) 
Normalized sum .M of square amplitudes of the two modes (IAZ12)Z,y, <&I"),,, at rad with 
respect to the surviving mode (IA,IZ),,, as a function of E.  The arrows indicate the different 
evolution of the vanishing modes when E increases or decreases. 

4.2. Heat flow measurements 
The heat flow across the convective cell is determined using the two methods, 
calorimetric and laser beam deflection, described in stj3.3.2 and 3.3.3. 

4.2.1. Calorimetric technique 
From experimental data, the non-dimensional convective heat flow N as a 

function of T can be determined. These data are well fitted with two straight lines 
with different slopes, which correspond to patterns of hexagons and rolls, 
respectively. By extrapolation of these straight lines to JV + 0 (that is N +  1) we can 
obtain the temperature difference at threshold. The values are 

AT, = 12.60+0.02K (hexagons), 

AT, = 12.68f0.02K (rolls). 

(Note: the errors in (4.1) are smaller than the errors in N because they depend only 
on the experimental accuracy. Indeed AT, can be obtained by a best fit of P versus 
AT.  The errors reported here are those arising from this fit.) 

The main results are shown in figure 7 (a ) ,  where N is represented as a function of 
e. (As we will discuss in the following the best choice of ATc to define e is 
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AT, = 12.62 K.) The straight lines in this diagram have slopes qh ( x  9;') 
= 0.89f0.02 for hexagons and vr ( =  B;l) = 1.15f0.02 for rolls. In the 
conditions of the present experiment it is not possible to determine the hysteretic 
region (coexistence of hexagons and rolls) with this calorimetric technique. 

4.2.2. Laser dejlection technique 
The non-dimensional convective heat flow JV can also be obtained simply by 

adding the intensity of the modes (see (2.11)). A linear fit of these data has been 
made. But as one can see in (A 7) or (2.12) this cannot be exact for hexagons near 
threshold. For hexagons, therefore we have also fitted with a function in the form 

ATJfi = ATc &";+AT, .h'Y/R,;+AT, X%th+Ib 1/3AT,, (4.2) 

with P = a(&);, 93, = gC, 9, = c (see also the Appendix and (2.12)-(2.13)). 
Equation (4.2) comes from the amplitude equations with a term Ib that takes into 
account the contributions of the lateral wall and the imperfections of the cell. 
Because of this fact the bifurcation is imperfect (Newel1 1979). For rolls the function 
taken is 

which comes from the expression 

JV = E / W ~ ( ~ + D & ) ,  

(4.3) 

(4.4) 

where the term in & is the first corrective term to the non-dimensional convective 
heat flow J (Niederlander, Lucke & Kamps 1988) and D is a parameter to be 
determined by the fitting. 

The two straight lines of the linear fit obtained with this technique are shown in 
figure 7 ( b ) .  By extrapolation of the straight lines to JV + 0 we obtain the temperature 
difference at  threshold. The values are 

AT, = 12.62f0.03 K (hexagons), 

AT, = 12.62f0.02K (rolls), 
(4.5) 

while, by fitting the experimental points in figure 7 (c) with the expressions (4.2) and 
(4.4) we obtain the values 

I AT, = 12.72f0.04K (hexagons), 

AT, = 12.60f0.03K (rolls). 

The values obtained differ slightly. The maximum difference arises from the 
nonlinear hexagonal fitting. However, we do not consider this value representative 
because the fitting is very delicate because of the small interval of e in which 
hexagons are stable. Therefore, by taking the average of the remaining values we 
have 

which will be taken as reference in the following. 
The rest of the parameters in the linear fit are 

ATc = 12.62K, (4.7) 

W, = 1.16+0.03, 9,. = 0.885+0.02. (4-8) 

The nonlinear fit gives instead 

} (4.9) 
W h  = 1.14+0.05, 9,. = 0.86+0.03, 9=-1.30+_1.33, 

Ib = (3.1 k0.2) x lo-*, D = (-6.OkO.6) x 
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The large indeterminacy in the parameter 9 that accounts for the non-Boussinesq 
effects is because the hysteretic region near threshold (R, < R < R,) is not observable 
under the present conditions. However, we can conclude that there is good 
agreement between the values of 9, and W, obtained with the two methods. We also 
notice that the imperfection parameter Ib is very small. For many purpose Ib can be 
neglected, but the fact that it is different from zero accounts for the influence of the 
lateral walls in the formation of the subcritical concentric rolls. 

4.3. Comparison between theory and experiments 
We use the value A K  = 12.62K to evaluate the non-Boussinesq corrections a t  
threshold and the normalized Rayleigh number c. This critical temperature difference 
leads to a mean temperature T, = 28.3 "C. 

4.3.1. Comparison of the critical temperature difference 

(see table 1)  for our experimental conditions in the expression 
Now, after introducing the values of the fluid parameters at mean temperature T, 

(4.10) 

where R, = 1708, one obtains the following value: 

AT, I theor  = 12.58 K. 

The small discrepancy between this value and the experimental one is mainly due to 
the indeterminacy in the liquid depth. A small variation in the depth of about 
6d = 10 pm leads to an indeterminacy of 6(AT,),,,,, = 0.21 K. Notice that although 
the absolute error in the liquid depth is very small, the relative error is about 0.6%, 
which gives a relative error in the temperature difference of about 1.8%. 

4.3.2. Comparison of the slopes of the convective heat flow curves 
The value of the coefficient B can be easily obtained when one knows the 

maximum and minimum temperatures in the cell a t  the convective threshold. The 
cold top plate is at 22 "C, the hot bottom plate is at 34.6 "C. Taking the values of the 
fluid parameters a t  these temperatures (see table 1 )  and putting them in (A 2) one 
obtains 

yo = -3.61 x y1 = -2.00 x yz = 2.74 x lo-', y 3  = -3.11 x lo-', 
y4 = 6.22 x 10-4 ; 

then, introducing the values of yc and P, (see (A 3)) in (A 1) one finds 

9 = -2.06. ( 4 . 1 1 ~ )  

As noted in the Appendix the negative value for 9 is in agreement with the sense of 
circulation (upward motion in the centre) observed in the experiment. The values of 
v and K at the mean temperature Tm in table 1 lead to Pr = 5.63. This value is 
introduced in the approximated theoretical expression for the parameters B, ( x 7;') 
and $2, (=  7;') in Busse's theory to obtain 

52, = 0.905, 9,. = 0.699. (4.1 1 b )  

The theoretical values of the slopes, 7, ( x 9;') and 7, ( = 9;')) of the convective heat 
flow curves, recovered from these expressions, and the experimental ones, recovered 
from (4.8) and (4.9), are reported in table 2. 
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Method 9,' 9;' WtI/@r 

Theoretical 1.11 1.43 1.29 
Calorimetric 0.89f0.02 1.15f0.02 1.29f0.05 
Optical (lin.) 0.86+0.03 1.13 f 0.02 1.31 f0.06 
Optical (nonlin.) 0.88f0.04 1.16 f 0.04 1.32f0.10 

TABLE 2. Theoretical and different experimental values of $ti1, 41;' and 9,,/9, 

Method a b C 

Theoretical 8.63 x 1.01 0.70 
Calorimetric - 1.25 f 0.05 0.87 f0.02 
Optical (lin.) - 1.30f0.06 0.89 f 0.02 
Optical (nonlin . ) - 1.28f0.09 0.86 f 0.03 

TABLE 3. Values of the different parameters in the amplitude equations (2.7) 
obtained by different methods (see the text) 

One can see that the experimental slopes yh and qr are smaller than the theoretical 
ones. This is due to finite-size effects in the experimental system (Ahlers et al. 1981). 
These finite-size effects reduce the convective heat flow, but by the same factor for 
hexagons and rolls (Walden & Ahlers 1981). This is confirmed by the fact that both 
the theoretical and the experimental ratios between the slopes are almost the same. 
Another remarkable fact is the good agreement between the calorimetric and the 
optical measurements, which confirms the validity of the construction used to 
calculate the heat flow with the laser deflection technique. 

The values (4.11 a,  b )  and (A 9) provide the theoretical values of the coefficients in 
the amplitude equations (2.7). Also, from (2.12) and (2.13) one can recover the 
corresponding experimental coefficients. The values of those theoretical and 
experimental coefficients are reported in table 3. 

4.3.3. Comparison of the transition threshold 
The images obtained with the shadowgraph and the laser deflection technique 

indicate that the transition from hexagons to rolls is not homogeneous. The finite size 
has a very considerable influence, as we have seen in the heat flow measurements. 

With the calorimetric technique it is not possible to see clearly the transition from 
hexagons to rolls and vice versa. Therefore, we have to utilize only the experimental 
results obtained with the laser deflection technique demonstrate this transition. 
With this technique we can determine the square amplitudes ( lAt[z)z,v of the three 
sets of rolls that constitute the hexagonal pattern and so we can define the following 
parameter : 

(4.12) 

where A, is the amplitude of the surviving set of rolls, while A,  and A,  are the modes 
which disappear in the transition. In figure 7 ( d ) ,  log A as a function of E is shown. 
The arrows in this figure indicate the different evolutions of the vanishing modes 
when E increases or decreases. As expected, the transition is smooth and hysteretic 
in the interval 0 < log A < - 00. By increasing E the pattern of hexagons is not 

14 FLM 234 
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Method % ‘h ‘hIEr 

Theoretical 5.46 x 0.188 3.44 
Optical (3.0k0.1) x 1Cr2 0.09 k 0.005 3.0f0.3 
Ph.c. ( 1 )  (3.9k 1.9) x 1Cr2 0.134 0.06 3.45 f0.09 
Ph.c. (2) (3.6k3.2) x 1e2 0.127 k0.12 3.49f0.16 

TABLE 4. The transition thresholds with different methods. Ph.c. (phenomenological correction) 
(1,2) values have been obtained after introducing the experimental values (1  = optical with linear 
fitting ; 2 = optical with nonlinear fitting) in the formulae (2.8)-(2.10). The errors for eh, E, and c,,/er 
are calculated from these analytical formulae, taking the experimental errors for the coefficients b 
and c. 

suddenly replaced by a pattern of rolls, but in a small interval of E the two 
symmetries compete. In  contrast, by decreasing e the pattern of rolls is smoothly 
replaced by hexagons that grow from the grain boundaries, as one can see in the 
sequence of photos in figure 4(c-f). 

The thresholds E ,  and eh for the transitions and their ratio eh/er, obtained with 
different methods, are reported in table 4. The two first rows indicate theoretical and 
experimental values. They differ by a factor about two. This discrepancy is due to  
different facts related to the finite size of the convective cell. As we have stressed in 
the present work, the analysis of Busse (1967 a )  has some limitations (validity for an 
infinite system, undeterminacy in the value o f 8  as a function of Pr in the rigid-rigid 
case). Therefore, one must take care when comparing the experimental values of the 
thresholds with the theoretical ones. However, as the amplitude equation formalism 
(52 )  is not limited to an infinite system, i t  is possible to correct the thresholds in a 
coherent manner. As one can see from (2.8),  (2.9) and (2 .12 ) ,  (2.13) the transition 
thresholds are linked to the heat flow for different symmetries. As a consequence it 
is worthwhile analysing if the decreasing of the experimental thresholds eh,r, with 
respect to their theoretical values, is related to a decrease of the experimental slopes 
qh,r. This question has been analysed in detail in a recent work (PBrez-Garcia, 
Pampaloni & Ciliberto 1990b). Introducing in (2.8) and (2.9) the experimental values 
of b and c ,  and the theoretical value of a (we cannot experimentally determine a with 
sufficient precision) one obtains the values of E ~ , ~  reported in the last two rows in 
table 4 (the subscript ph.c. stand for phenomenological corrections). The indices (1)  
and ( 2 )  refer to the values obtained with the linear and the nonlinear fits, 
respectively. I n  these calculations we have taken the theoretical value of 8, because 
the experiment does not give this parameter with a sufficient accuracy. Moreover, one 
expects that 8 is less influenced by the finite-size effect than the other parameters. 
The results show that the values of T ~ , ~ ,  obtained in this experiment, are consistent 
with a decrease in the threshold values E ~ , ~ ,  with respect to those for an infinite 
system. Moreover, the thresholds corrected in this phenomenological manner are 
nearer to the experimental ones than those calculated theoretically. From (A 9 )  it is 
obvious that the parameter a is linearly dependent on 8. The nonlinear fit (4.2) gives 
PeXp = - 1.30 (smaller than that calculated theoretically @theor = -2.06), but this 
value is affected by a great uncertainty. 

Even with these phenomenological corrections the experimental and theoretical 
values cannot be in complete agreement. The reason is that the corrections are made 
by means of some global parameters (&&) that  do not account for the particular 
details of the pattern, and more specifically, for the defects that, as seen in 
photographies, are very important to nucleate the transition (Ciliberto et al. 1990). 
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5. Summary and conclusions 
We list here the main results and conclusions of our investigation : 
(1) We have extended previous experimental and theoretical works on convection 

under non-Boussinesq conditions. 
(2) A laser beam deflection technique has been used. This is a more powerful 

technique than the calorimetric one because it allows, apart from a global quantity 
such as the heat flow, a local measure of the temperature field to be obtained, by 
which one can also study the defects of the convective structure. Moreover, this 
technique allows qualitative features of the convective texture to be obtained that 
are in perfect agreement with the shadowgraph ones. 

(3) We have shown that Busse's (1967) analysis gives the same results rn the 
amplitude equations in the case of an infinite system. The last formalism is more 
general than the previous one because it includes spatial variations of the convective 
structure, for instance, like those due to the finite-size effects or to the presence of 
defects. 

(4) By the Fourier analysis of the convective temperature field we have been able 
to determine the slow varying amplitude of the spatial modes that constitute the 
pattern and, therefore, to characterize the hysteresis of the hexagon-roll transition 
more accurately than in previous works. 

(5) A stable coexistence of hexagons and rolls, not theoretically predicted, has 
been observed. 

(6) We have done a comparison of the experimental results with the theoretical 
ones of Busse's analysis, demonstrating that the discrepancies are just due to finite- 
size effects. These effects have been widely studied in Rayleigh-BBnard convection 
but not in the non-Boussinesq case. 
(7) An important conclusion is that the finite-size effects, and the defects (Ciliberto 

et al. 1990) induced by these, are crucial in this kind of transition. 
(8) From the present analysis it is evident that the transition between different 

symmetries has many similarities with the nucleation process in the first-order phase 
transition in a thermal equilibrium system. 

We have benefited from discussions with G. Ahlers, F. T. Arecchi, P. Coullet, P. 
Hohenberg, J. Lega, M. Liicke. This work has been partially supported by a EEC 
grant SCI-OO35-C, by the Gruppo Nazionale di Struttura della Materia (Italy), by the 
DGICYT of the Spanish Government (CE-0002-89) and by an Italy-Spain Integrated 
Action (n046-1989, n048-1990). 

Appendix 
We recall briefly the main results of Busse's (1967a) analysis. 
The departures from the Oberbeck-Boussinesq (OB) approximation are quan- 

titatively given by a parameter 9, defined as 

1 4 2  
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(A 2 )  

Here the subscripts 1 and 2 refer to the values a t  the bottom and at the top of the 
cell, respectively. Their differences are normalized by the value of the corresponding 
parameters at  the mean temperature T, = a(Tl + g). The coefficients are 

0.5023 
Pr ' 

, P2 = 2.755, P3 = 2.917-- Pl = - 6.603 -- 
0.5023 

Pr 
0.158 

Pr ' 
Po = 2.676-- 

0.2512 
P4 = -6.229+- 

Pr ' 

(We take the values obtained by Busse 1967a for Pr = 00 in the rigid-rigid case, 
adding the corrections for finite Pr in the free-free case, Ahlers 1980). 

These departures from the OB approximation give rise to the following 
consequences : (i) near threshold the pattern is hexagonal ; (ii) subcritical motions are 
possible ; (iii) an hysteretic transition between hexagons and rolls is predicted, when 
the heating increases. Therefore the bifurcation is transcritical as indicated in figure 
1,  and several threshold values can be distinguished : 

Ra < Re < Rr < Rh. (A 4 )  

Depending on the previous history of R, between R, < R < R, both hexagons and 
conduction can exist ; in the interval R, < R < R, only hexagons are stable ; between 
R, < R < R,, both hexagons and rolls can exist; for R 2 Rh only rolls are stable. 
These thresholds depend on B as 

with 

(A 6 )  i 
9, = 0.89360 + 0.04959Pr-' + 0.06787Pr-2, 

W, = 0.69942 -0.00472Pr-1 +0.00832Pr-2, 

Y 2  = 0.291 27 + 0.081 47Pr-' + 0 . 0 8 9 3 3 P ~ ~ .  

Notice that, at  fixed Pr, these thresholds depend on B only. The sign of B determines 
the sense of circulation in hexagonal cells: the motion is upward in the centre and 
downward on the sides of each hexagon for negative 9, while it is in the opposite 
sense for positive B (Busse 1967 a). The expressions for the heat flow are the following 
(Ahlers 1980) : 

in the case of hexagons, while for rolls 

N, = €/a,. (A 8) 

A direct comparison among (A 7 ) ,  (A8) and (2 .12 ) ,  (2 .13 )  allows the relation 
among (A 5 )  and (2.8),  (2.9) for the transition thresholds to be determined (PBrez- 
Garcia et al. 1990a): 

a2 = 3B2/R,,  b = ;(3W,-W,), c = W,, 22 = ( b - c ) .  (A 9 )  

Notice that this identification leads also to the expression .Y2 = i(Bh-3,), whose 
validity can be directly checked from (A 6 ) .  
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